NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD ### COVER CROP (Ac.) #### **CODE 340** #### **DEFINITION** Crops including grasses, legumes, and forbs for seasonal cover and other conservation purposes. ### **PURPOSE** Reduce erosion from wind and water. Increase soil organic matter content. Capture and recycle or redistribute nutrients in the soil profile. Promote biological nitrogen fixation and reduce energy use. Increase biodiversity. Suppress weeds. Manage soil moisture. Minimize and reduce soil compaction. #### CONDITIONS WHERE PRACTICE APPLIES All lands requiring vegetative cover for natural resource protection and or improvement. ### **CRITERIA** ### **General Criteria Applicable to All Purposes** Plant species, seedbed preparation, seeding rates, dates, depths, fertility requirements, and planting methods will be consistent with approved local criteria and site conditions. Cover crops shall planted as described in the NH Planting Specification Guide. Crops may also be planted at custom rates identified by seed companies, if (i) rates are published, and (ii) all species are planted at the proper time. Custom mixes of multiple species are encouraged providing: (i) all species are listed in the NH Cover Crop Specification Guide, (ii) the sum of the proportional seeding rate of all species used exceeds 125%, and (iii) all species are planted at the proper time. The species selected will be compatible with other components of the cropping system. Ensure herbicides used with cover crops are compatible with the following crop. Ensure that plants are not listed as noxious weeds or invasive species for NH. Cover crop residue will not be burned. # Additional Criteria to Reduce Erosion from Wind and Water Time cover crop establishment with other practices, so that the soil will be adequately protected during the critical erosion period(s). Plants selected for cover crops will have the physical characteristics necessary to provide adequate protection. Determine the amount of surface and/or canopy cover needed from the cover crop using current erosion prediction technology. # Additional Criteria to Increase Soil Organic Matter Content Cover crop species will be selected on the basis of producing high volumes of organic material and or root mass to maintain or improve soil organic matter. The NRCS Soil Conditioning Index (SCI) procedure will be used to determine the amount of biomass required to have a positive trend in the soil organic matter subfactor. The cover crop shall be planted plant as early as possible and be terminated as late as feasible to maximize plant biomass production, considering crop insurance criteria, the time needed to prepare the field for planting the next crop, and soil moisture depletion. Plant high residue cover crops at least 2 weeks earlier than the latest fall planting date. Do not harvest residue (except by grazing). ### Additional Criteria to Capture and Recycle Excess Nutrients in the Soil Profile Cover crops will be established and actively growing before the expected period(s) of nutrient leaching. Select cover crop species for their ability to take up large amounts of nutrients from the rooting profile of the soil. Terminate the cover crop as late as feasible to maximize plant biomass production. Consider the time needed to prepare the field for planting the next crop and soil moisture depletion. ## Additional Criteria to Promote Biological Nitrogen Fixation and Reduce Energy Use Use legumes or legume-grass mixtures to establish cover crops. The specific Rhizobium bacteria for the selected legume will either be present in the soil or the seed will be inoculated at the time of planting. ### **Additional Criteria to Increase Biodiversity** Select cover crop species to achieve one or more of the following: species mix with different maturity dates, attract beneficial insects, attract pollinators, increase soil biological diversity, serve as a trap crop for damaging insects, and/or provide food and cover for wildlife habitat management. Cover crops used to improve biodiversity shall be grown until full flower (75% of canopy). ### Additional Criteria for Weed Suppression Species for the cover crop will be selected for their chemical or physical characteristics to suppress or compete with weeds. Higher seeding rates to provide additional cover will help control weeds to eliminate or reduce herbicide use. If cover crop is used for rolling/crimping, increase seeding rate by 30%, and plant at least 3 weeks earlier than the latest fall planting date or 1 week earlier than the latest early fall planting date. A late kill may be used if the objectives are to use as a biocontrol. For long-term weed suppression, reseeding annuals and/or biennial species can be used. ### Additional Criteria for Soil Moisture Management Terminate growth of the cover crop sufficiently early to conserve soil moisture for the subsequent crop. Cover crops established for moisture conservation shall be left on the soil surface. In areas of potential excess soil moisture, allow the cover crop to grow as long as possible to maximize soil moisture removal. ## Additional Criteria to Minimize and Reduce Soil Compaction Select and manage cover crop species that will produce deep roots and large amounts of surface or root biomass to increase soil organic matter, improve soil structure, and increase soil moisture through better infiltration. Cover crops used to reduce soil compaction shall be planted at least 1 week earlier than the latest fall planting date. ### **CONSIDERATIONS** Plant cover crops in a timely matter to establish a good stand. When applicable, ensure cover crops are managed and are compatible with the client's crop insurance criteria. Maintain an actively growing cover crop as late as feasible to maximize plant growth, allowing time to prepare the field for the next crop and moisture depletion. When used to redistribute nutrients from deeper in the profile up to the surface layer, consider killing of the cover crop in relation to the planting date of the following crop. If the objective is to best synchronize the use of cover crop as a green manure to cycle nutrients, factors such as the carbon/nitrogen ratios may be considered to kill early and have a faster mineralization of nutrients to match release of nutrient with uptake by following cash crop. The right moment to kill the cover crop will depend on the specific rotation, weather, and grower objectives. Use deep-rooted species to maximize nutrient recovery. Use grasses to utilize more soil nitrogen, and legumes to utilize more phosphorus. ### NRCS NH Avoid cover crop species that harbor or carryover potentially damaging diseases or insects. For most purposes for which cover crops are established, the combined canopy and surface cover is at nearly 90 percent or greater, and the above ground (dry weight) biomass production is at least 4,000 lbs/acre. Cover crops may be used to improve site conditions for establishment of perennial species. Use plant species that enhance bio-fuels opportunities. Use plant species that enhance forage opportunities for pollinators by using diverse legumes and other forbs. Use a diverse mixture of 2 or more species to address multiple purposes. ### PLANS AND SPECIFICATIONS Plans and specifications will be prepared for the practice site. Plans for the establishment of cover crops shall include: Field number and acres Species or species of plants to be established. Seeding rates. Recommended seeding dates. Establishment procedure. Planned rates and timing of nutrient application. Planned dates and method to terminate the cover crop. Other information pertinent to establishing and managing the cover crop. Plans and specifications for the establishment and management of cover crops may be recorded in narrative form, on job sheets, or on other forms. #### **OPERATION AND MAINTENANCE** Control growth of the cover crop to reduce competition from volunteer plants and shading. Control weeds in cover crops by mowing or by using other pest management techniques. Control soil moisture depletion by selecting water efficient plant species and terminating the cover crop before excessive transpiration. Follow cover crop termination guidelines for Zone 4 non-irrigated crops to avoid any issues with crop insurance or other USDA programs. Terminate cover crop at or within 5 days after planting, but before crop emergence. Evaluate the cover crop to determine if the cover crop is meeting the planned purpose(s). If the cover crop is not meeting the purpose(s) adjust the management, change the species of cover crop, or choose a different technology. ### **REFERENCES** Björkman, T. 2009. Cover crops for vegetable growers. Cornell University, New York Agricultural Experiment Station. http://www.hort.cornell.edu/bjorkman/lab/cover crops/index.php Bosworth, S. 2006. Using cover crops in corn silage systems. University of Vermont Cooperative Extension. http://www.uvm.edu/pss/vtcrops/articles/Cover Crops_for_CornSilage_FS.pdf Clark, A. (ed.). 2007. Managing cover crops profitably. 3rd ed. Sustainable Agriculture Network Handbook Series; bk 9. http://www.sare.org/Learning-Center/Books/Managing-Cover-Crops-Profitably-3rd-Edition/Text-Version Hargrove, W.L., ed. Cover crops for clean water. SWCS, 1991. Magdoff, F. and H. van Es. Cover Crops. 2000. p. 87-96 *In* Building soils for better crops. 2nd ed. Sustainable Agriculture Network Handbook Series; bk 4. National Agriculture Library. Beltsville, MD. NRCS Cover Crop Termination Guidelines for Non-Irrigated Cropland. http://www.nrcs.usda.gov/Internet/FSE_DOCU MENTS/stelprdb1167871.pdf Reeves, D.W. 1994. Cover crops and erosion. p. 125-172 *In* J.L. Hatfield and B.A. Stewart (eds.) Crops Residue Management. CRC Press, Boca Raton, FL Schonbeck, M. and R. Morse. Cover crops for all seasons: Expanding the cover crop tool box for organic vegetable producers. Virginia Assoc. for Biological Farming Information Sheet 3-06. http://www.vabf.org/docs/information-sheets/cover-crops-for-all-seasons/download **Table 1. Simplified Planting Table for Reducing Soil Erosion** Commonly grown cover crops and latest planting date | Cover Crop | Planting Rate
(lbs/acre) | | Latest Planting Date | | Seeding
Depth | |------------------------|-----------------------------|---------|----------------------|--------|------------------| | | Broadcast | Drilled | North | South | Inches | | Winter Rye (Common) | 110 | 85 | Sep 14 | Oct 1 | 1-2 | | Winter Rye (Aroostook) | 110 | 85 | Oct 7 | Oct 14 | 1-2 | | Triticale and Spelt | 110 | 85 | Sep 14 | Oct 1 | 1-2 | | Wheat | 120 | 90 | Sep 14 | Oct 1 | 1/2-11/2 | | Barley | 120 | 90 | Sep 1 | Sep 14 | 1-2 | | Oats | 100 | 70 | Sep 1 | Sep 14 | 1/2-11/2 | | Red Clover | 15 | 10 | Sep 1 | Sep 14 | 1/4-1/2 | | White or Alsike Clover | 12 | 8 | Sep 1 | Sep 14 | 1/4-1/2 | | Hairy Vetch | 35 | 25 | Sep 1 | Sep 14 | 1/2-11/2 | | Field Pea | 100 | 70 | Sep 1 | Sep 14 | 1-3 | | Forage Radish | 15 | 10 | Sep 1 | Sep 14 | 1/4-1/2 | North = Coos, Grafton, and Carroll counties. South = all other counties. Use <u>either</u> the simplified table above or use the NH 340 Planting Specification Guide for more options. Consider aerial seed to establish cover crops early. | Legume Inoculants | | | | | |--|--|--|--|--| | Bacteria | Legumes | | | | | Rhizobium leguminosarum biovar trifolii | Clovers (Red, Alsike, White, Berseem, Crimson) | | | | | Rhizobium leguminosarum biovar trifolii (subterraneum) | Subterranean Clover | | | | | Rhizobium leguminosarum biovar viceae | Hairy Vetch, Chickling Vetch, Field Pea | | | | | Sinorhizobium meliloti | Sweetclover, Alfalfa | | | | | Bradyrhizobium japonicum | Soybean, Alfalfa | | | | ^{*}Broadcast rates of 2 bushels/acre or drilled rates of 1.5 bushels/acre